Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index

نویسندگان

  • Prashant Pandey
  • Fatemeh Almodaresi
  • Michael A. Bender
  • Michael Ferdman
  • Rob Johnson
  • Rob Patro
چکیده

a Motivation. Sequence-level searches on large collections of RNA-seq experiments, such as the NIH Sequence Read Archive (SRA), would enable one to ask many questions about the expression or variation of a given transcript in a population. Bloom filter-based indexes and variants, such as the Sequence Bloom Tree, have been proposed in the past to solve this problem. However, these approaches suffer from fundamental limitations of the Bloom filter, resulting in slow build and query times, less-than-optimal space usage, and large numbers of false positives. Results. This paper introduces Mantis, a space-efficient data structure that can be used to index thousands of rawread experiments and facilitate large-scale sequence searches on those experiments. Mantis uses counting quotient filters instead of Bloom filters, enabling rapid index builds and queries, small indexes, and exact results, i.e., no false positives or negatives. Furthermore, Mantis is also a colored de Bruijn graph representation, so it supports fast graph traversal and other topological analyses in addition to large-scale sequence-level searches. In our performance evaluation, index construction with Mantis is 4.4× faster and yields a 20% smaller index than the state-of-the-art split sequence Bloom tree (SSBT). For queries, Mantis is 6×–108× faster than SSBT and has no false positives or false negatives. For example, Mantis was able to search for all 200,400 known human transcripts in an index of 2652 human blood, breast, and brain RNA-seq experiments in one hour and 22 minutes; SBT took close to 4 days and AllSomeSBT took about eight hours. Mantis is written in C++11 and is available at https://github.com/splatlab/mantis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING MODIFIED CHARGED SYSTEM SEARCH

Optimal design of large-scale structures is a rather difficult task and the computational efficiency of the currently available methods needs to be improved. In view of this, the paper presents a modified Charged System Search (CSS) algorithm. The new methodology is based on the combination of CSS and Particle Swarm Optimizer. In addition, in order to improve optimization search, the sequence o...

متن کامل

A heuristic approach for multi-stage sequence-dependent group scheduling problems

We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...

متن کامل

Computing Matching Statistics and Maximal Exact Matches on Compressed Full-Text Indexes

Exact string matching is a problem that computer programmers face on a regular basis, and full-text indexes like the suffix tree or the suffix array provide fast string search over large texts. In the last decade, research on compressed indexes has flourished because the main problem in large-scale applications is the space consumption of the index. Nowadays, the most successful compressed inde...

متن کامل

A fast algorithm for exact sequence search in biological sequences using polyphase decomposition

MOTIVATION Exact sequence search allows a user to search for a specific DNA subsequence in a larger DNA sequence or database. It serves as a vital block in many areas such as Pharmacogenetics, Phylogenetics and Personal Genomics. As sequencing of genomic data becomes increasingly affordable, the amount of sequence data that must be processed will also increase exponentially. In this context, fa...

متن کامل

Cosine Similarity Search with Multi Index Hashing

Due to rapid development of the Internet, recent years have witnessed an explosion in the rate of data generation. Dealing with data at current scales brings up unprecedented challenges. From the algorithmic view point, executing existing linear algorithms in information retrieval and machine learning on such tremendous amounts of data incur intolerable computational and storage costs. To addre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017